BCSGapEnergy

class BCSGapEnergy(gap_energy_0, kappa)

Gap energy as calcuated from BCS theory

Solves the self consistent gap energy equation [1]

\frac
    {1}
    {N(0) V}
=
\int\limits_{0}^{\hbar \omega_{D}}
    \frac
        {\tanh{
            \left(
            \frac{\sqrt{\Delta^{2} + x^{2}}}{2 T k_{B}}
            \right)}}
        {\sqrt{\Delta^{2} + x^{2}}}
    dx

The Debye frequency is given by \omega_D. For convenience we define \kappa = \frac{\hbar \omega_{D}}{2 T_{c} k_{B}} and \eta = \frac{1}{N(0) V}.

The original BCS assumes the weak coupling limit which corresponds to \kappa \gg 1. We do not make the assumption when calculting the gap energy.

Parameters
  • gap_energy_0 (float) –

  • kappa (float) –

critical_frequency(temperature)

Get the critical frequency or gap frequency

Parameters

temperature (float) –

Return type

float

critical_temperature()

Get the critical temperature or transition temperature

Return type

float

eta()

Calculate and return eta

evaluate(temperature)

Evaluate the gap energy at the specific temperature

Parameters

temperature (float) –

Return type

float

gap_energy_0()

Get the gap energy at T = 0 K